Jumat, 18 Oktober 2013

 15.55      1 comment
Sistem Bilangan atau Number System adalah Suatu cara untuk mewakili besaran dari suatu item fisik. Sistem Bilangan menggunakan suatu bilangan dasar atau basis (base / radix) yang tertentu. Dalam hubungannya dengan komputer, ada 4 Jenis Sistem Bilangan yang dikenal yaitu : Desimal (Basis 10), Biner (Basis 2), Oktal (Basis 8) dan Hexadesimal (Basis 16). Berikut penjelesan mengenai 4 Sistem Bilangan ini :
1. Desimal (Basis 10)
     
Sistem bilangan desimal/persepuluhan adalah sistem bilangan yang menggunakan 10 macam angka dari 0,1, sampai 9. Setelah angka 9, angka berikutnya adalah 1 0, 1 1, dan seterusnya (posisi di angka 9 diganti dengan angka 0, 1, 2, .. 9 lagi, tetapi angka di depannya dinaikkan menjadi 1). sistem bilangan desimal ditemukan oleh Al-Kashi,ilmuwan persia Sistem bilangan desimal sering dikenal sebagai sistem bilangan berbasis 10, karena tiap angka desimal menggunakan basis (radix) 10, seperti yang terlihat dalam contoh berikut:
angka desimal 123 = 1*102 + 2*101 + 3*100
Berikut adalah tabel yang menampilkan sistem angka desimal (basis 10), sistem bilangan biner (basis 2), sistem bilangan/ angka oktal (basis 8), dan sistem angka heksadesimal (basis 16) yang merupakan dasar pengetahuan untuk mempelajari komputer digital. Bilangan oktal dibentuk dari bilangan biner-nya dengan mengelompokkan tiap 3 bit dari ujung kanan (LSB). Sementara bilangan heksadesimal juga dapat dibentuk dengan mudah dari angka biner-nya dengan mengelompokkan tiap 4 bit dari ujung kanan.
Desimal Biner (8 bit) Oktal Heksadesimal
0 0000 0000 000 00
1 0000 0001 001 01
2 0000 0010 002 02
3 0000 0011 003 03
4 0000 0100 004 04
5 0000 0101 005 05
6 0000 0110 006 06
7 0000 0111 007 07
8 0000 1000 010 08
9 0000 1001 011 09
10 0000 1010 012 0A
11 0000 1011 013 0B
12 0000 1100 014 0C
13 0000 1101 015 0D
14 0000 1110 016 0E
15 0000 1111 017 0F
16 0001 0000 020 10

2. Biner (Basis 2)
    
Sistem bilangan biner atau sistem bilangan basis dua adalah sebuah sistem penulisan angka dengan menggunakan dua simbol yaitu 0 dan 1. Sistem bilangan biner modern ditemukan oleh Gottfried Wilhelm Leibniz pada abad ke-17. Sistem bilangan ini merupakan dasar dari semua sistem bilangan berbasis digital. Dari sistem biner, kita dapat mengkonversinya ke sistem bilangan Oktal atau Hexadesimal. Sistem ini juga dapat kita sebut dengan istilah bit, atau Binary Digit. Pengelompokan biner dalam komputer selalu berjumlah 8, dengan istilah 1 Byte/bita. Dalam istilah komputer, 1 Byte = 8 bit. Kode-kode rancang bangun komputer, seperti ASCII, American Standard Code for Information Interchange menggunakan sistem peng-kode-an 1 Byte.


20=1
21=2
22=4
23=8
24=16
25=32
26=64
dst
Ԃ== Perhitungan ==
Desimal Biner (8 bit )
0 0000 0000
1 0000 0001
2 0000 0010
3 0000 0011
4 0000 0100
5 0000 0101
6 0000 0110
7 0000 0111
8 0000 1000
9 0000 1001
10 0000 1010
11 0000 1011
12 0000 1100
13 0000 1101
14 0000 1110
15 0000 1111
16 0001 0000
Perhitungan dalam biner mirip dengan menghitung dalam sistem bilangan lain. Dimulai dengan angka pertama, dan angka selanjutnya. Dalam sistem bilangan desimal, perhitungan mnggunakan angka 0 hingga 9, sedangkan dalam biner hanya menggunakan angka 0 dan 1.

3. Oktal (Basis 8)

Oktal atau sistem bilangan basis 8 adalah sebuah sistem bilangan berbasis delapan. Simbol yang digunakan pada sistem ini adalah 0,1,2,3,4,5,6,7. Konversi Sistem Bilangan Oktal berasal dari Sistem bilangan biner yang dikelompokkan tiap tiga bit biner dari ujung paling kanan (LSB atau Least Significant Bit).
Biner Oktal
000 000 00
000 001 01
000 010 02
000 011 03
000 100 04
000 101 05
000 110 06
000 111 07
001 000 10
001 001 11
001 010 12
001 011 13
001 100 14
001 101 15
001 110 16
001 111 17

4. Hexadesimal (Basis 16)

Heksadesimal atau sistem bilangan basis 16 adalah sebuah sistem bilangan yang menggunakan 16 simbol. Berbeda dengan sistem bilangan desimal, simbol yang digunakan dari sistem ini adalah angka 0 sampai 9, ditambah dengan 6 simbol lainnya dengan menggunakan huruf A hingga F. Sistem bilangan ini digunakan untuk menampilkan nilai alamat memori dalam pemrograman komputer. Nilai desimal yang setara dengan setiap simbol tersebut diperlihatkan pada tabel berikut:














0hex = 0dec = 0oct
0 0 0 0

1hex = 1dec = 1oct
0 0 0 1

2hex = 2dec = 2oct
0 0 1 0

3hex = 3dec = 3oct
0 0 1 1













4hex = 4dec = 4oct
0 1 0 0

5hex = 5dec = 5oct
0 1 0 1

6hex = 6dec = 6oct
0 1 1 0

7hex = 7dec = 7oct
0 1 1 1













8hex = 8dec = 10oct
1 0 0 0

9hex = 9dec = 11oct
1 0 0 1

Ahex = 10dec = 12oct
1 0 1 0

Bhex = 11dec = 13oct
1 0 1 1













Chex = 12dec = 14oct
1 1 0 0

Dhex = 13dec = 15oct
1 1 0 1

Ehex = 14dec = 16oct
1 1 1 0

Fhex = 15dec = 17oct
1 1 1 1













  

1 komentar:

Popular Posts

Diberdayakan oleh Blogger.

Blog Archive